
Master Thesis Summary

My master thesis was concentrated entirely on 3D Computer Vision. I summarize it in this paper. During
my internship at the National University of Singapore, I researched in the CVRP lab under the supervisor,
Prof.Gim Hee Lee. I worked on extrinsic parameters calibration of non-overlapping cameras. I was working
on the project to obtain precise real-world experiment results. In my master thesis, I studied methods
on the 3D reconstruction of non-rigid surfaces from realistic monocular video under the supervision of
Prof.razvan, co-supervision of Prof.Moghadasi, and consult of Dr.Kamali. Several simplified methods based
on the orthographic models have been investigated.

1 Extrinsic Parameters Calibration of Non-Overlapping Cameras

Figure 1: Overall schematic of the proposed method in
two-camera extrinsic calibration, we consider camera
pairs (pk, p0), k = 1, . . . , Ncam to estimate extrinsic
parameters in multi-camera system.

Motivation. Camera calibration is a significant
problem in Computer Vision. It consists of extrinsic
and intrinsic calibration. The intrinsic camera cali-
bration is a well-known problem that researching on
these concepts is beyond these research project [16].
The extrinsic parameters of cameras that have over-
lapping views can be calculated with linear eight-
point or minimal five-point algorithms [9, 12]. In
this project, we proposed a novel method for es-
timating extrinsic parameters of cameras without
overlapping views. We formulate this problem by
using light and shadow geometry and evaluate our
approach with synthetic data and real-world exper-
iments. Estimating light coordinate with respect to
a reference coordinate system is crucial in photo-
metric stereo problems. In addition to the extrinsic
parameters calibration of cameras, the light position
in world coordinate is computed by our proposed
method.

Problem. Suppose there exist Ncam cameras in multi-camera system that the views of these cameras do
not have any overlap. The intrinsic parameters of these cameras are given. If we consider world coordinate
system on the camera p0, the goal of this research is to estimate homogeneous transformation matrices
pkTp0

, k = 1, . . . , Ncam which are 4×4 matrices that bring points defined in camera p0 to camera pk and they
are defined as follows:

pkTp0
=

[
pkRp0

pktp0

0 1

]

, k = 1, . . . , Ncam

where pkRp0
, pktp0

are relative rotation and translation of camera pk with respect to camera p0 coordinate
system.

Proposed Solution. Our goal is to calibrate cameras in multi-camera system when cameras do not have
overlapping views in an indoor environment. We exploit at least three lights in the setup, and we estimate
the extrinsic parameters of cameras by optimizing reprojection error. We need initialization to optimize our
reprojection error. After estimating lights position in every camera coordinate system, we calculate extrinsic
parameters of camera pk by using lights position in two cameras pk and reference camera p0 coordinate
system.
Therefore, we describe light and shadow geometry in this paper; then, we formulate our problem by using
this geometry, and finally, we represent the evaluation results of the proposed solution on real-world and
synthetic data.
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(a) (b) (c)

Figure 2: (a) Light and shadow geometry, a point light l casts a shadow s̄ on the shadow receiver plane Π.
(b) l1 is transfomed to a new position l2 with the pose (R, t). l1, and l2 cast shadows respectively s1, and s2
from the same caster c. (c) lsp0

lights position in the world coordinate system are transformed to lights lispk

in the Πi
pk

coordinate system with the pose Πi
pkTpk

pkTp0
.

Let us assume that the pose of a shadow receiver plane Π is fixed to the world coordinate system’s xy plane,
and a point light l ∈ R

3 is in world coordinate. An infinitesimal caster located at c ∈ R
3 casts a shadow on

Π. It has a position of s ∈ R
2 in Π coordinate system. As Figure 2a shows, a point light, caster, and its

corresponding shadow lie on the same line, and the shadow position in world coordinate is s̄ = [s⊤, 0]⊤, so
we have:

(c− s)× (l − s) = 0. (1)

By substituting l = [ lx ly lz ]⊤, c =
[
cx cy cz

]⊤
, s̄ = [ sx sy 0 ]⊤ and their corresponding

homogeneous coordinates l̂, ĉ, ŝ = [ sx sy 1 ]⊤ in the equation (1), we have equations with the constant
λ as follows:

λŝ =





−lz 0 lx 0
0 −lz ly 0
0 0 1 −lz





︸ ︷︷ ︸

L

ĉ =





−lz 0 lx
0 −lz ly
0 0 1





︸ ︷︷ ︸

K





cx − lx
cy − ly
cz − lz





︸ ︷︷ ︸

c−l

=





−lz 0 lx
0 −lz ly
0 0 1









1 0 0 −lx
0 1 0 −ly
0 0 1 −lz



 ĉ = K(I| − l)ĉ

⇒ λŝ = K(I| − l)ĉ and λŝ = Lĉ and λŝ = K(c− l) (2)

Structure from Motion problem is analogous to light and shadow geometry. As the equation illustrates this
similarity, point lights, shadow receiver plane, shadow casters, and two matrices of K, and (I| − l) can be
described correspondingly by pinhole cameras, the image plane, observed points, and camera intrinsic and
extrinsic parameters [13].
Our main objective is to estimate the pose of cameras with respect to the world coordinate system. Since
camera views do not have any overlaps, we use light and shadow geometry for constraining the problem.
We denote the shadow receiver plane in front of camera pk as Πpk

. This plane undergoes multiple poses

{Π
i
pkRpk

,
Πi

pk tpk
} because single shadow observation does not provide sufficient information to solve the

problem, so Πi
pk

is the plane Πpk
in the ith pose. According to Figure 2c, the position of lights in the Πi

pk

coordinate system lispk
are related to the lights position in the world coordinate system lsp0

respectively as
follows:

l̂ispk
= Πi

pkTpk

pkTp0
l̂sp0
,

Πi
pkTpk

=

[
Πi

pkRpk

Πi
pk tpk

0 1

]

, s = 1, . . . , Nl, k = 1, . . . , Ncam,

i = 1, . . . , Np
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where Πi
pkTpk

is a homogeneous transformation that transforms camera pk to shadow receiver plane Πi
pk

coordinate systems, and l̂ispk
, l̂sp0

are homogeneous coordinates of lispk
, lsp0

. With the index of iks the matrix
Liks becomes

Liks =





−liksz 0 liksx 0
0 −liksz liksy 0
0 0 1 −liksz





This problem can be formulated from the λŝ = Lĉ as a reprojection error:

min
cj ,lsp0

,pkRp0
,pk tp0 ,λijks

Ncam∑

k=1

Nl∑

s=1

Ncast∑

j=1

Np∑

i=1

||λijksŝijks − Liksĉj ||H (3)

s.t l̂ispk
= Πi

pkTpk

pkTp0
l̂sp0
,

where Ncam, Nl are respectively the number of cameras and lights in the multi-camera system, Ncast is the
number of casters on the plane Πpk

, and Np indicates the number of poses that the shadow receiver plane
Πpk

have in front of the camera pk. A point light lispk
lights on the caster cj , and a shadow with the position

sijks on the shadow receiver plane Πi
pk

is casted. Huber cost function ||.||H, which is hybrid between L1 and
least-square cost function, is used to reduce the effects of outliers with the parameter b = 1. We solve this
nonlinear problem with the Levenberg-Marquardt algorithm, and it is implemented with Ceres Solver [1].
It is required to calculate the initial cj , l

s
p0
, pkRp0

, pktp0
, j = 1, . . . , Ncast; k = 1, . . . , Ncam; s = 1, . . . , Nl to

optimize the problem.
Note that fixed pose of the shadow receiver plane and moving light position with (R, t) is equivalent to
fixed light position and moving shadow receiver plane with (R, t). Therefore, let us assume that the pose of
the shadow receiver plane is fixed, and point lights are moving in computations while the position of point
lights are fixed and we move shadow receiver plane Πpk

, k = 0, . . . , Ncam in practical experiments. Suppose
that a point light l1 is moved with the rotation R and translation t to a new position l2, so there exist two
shadows s1 and s2 from caster c (Figure 2b). We use equation (2) for estimating lights position in the world
coordinate lsp0

, s = 1, . . . , Nl, and the camera coordinate systems lspk
, k = 1, . . . , Ncam, so we have:

{
λ1ŝ1 = K1(c− l1) → λ1K

−1
1 ŝ1 = c− l1,

λ2ŝ2 = K2(c− l2) → λ2K
−1
2 ŝ2 = c− l2,

=⇒ ŝ⊤2 K
−⊤
2 [l1 − l2]×K

−1
1 ŝ1 = 0, (4)

where [l1 − l2]× denotes 3 × 3 skew-symmetric matrix. We expand the equation (4) by substituting ŝ1 =




s1x
s1y
1



 , ŝ2 =





s2x
s2y
1



 , l1 =





lx
ly
lz



 , R =





r1 r2 r3
r4 r5 r6
r7 r8 r9



 , t =





t1
t2
t3



, so the equation becomes

(a0)l
2
x + (a1)lxly + (a2)lxlz + (a3)lx + (a4)l

2
y + (a5)lylz + (a6)ly + (a7)l

2
z + (a8)lz + a9 = 0

a0 = r7s2y − r7s1y

a1 = r7s1x − r7s2x − r8s1y + r8s2y

a2 = r1s1y − r1s2y − r4s1x + r4s2x − r9s1y + r9s2y

a3 = s2yt3 − s1yt3 − r7s1xs2y + r7s1ys2x

a4 = r8s1x − r8s2x

a5 = r2s1y − r2s2y − r5s1x + r5s2x + r9s1x − r9s2x

a6 = s1xt3 − s2xt3 − r8s1xs2y + r8s1ys2x

a7 = r3s1y − r3s2y − r6s1x + r6s2x

a8 = s1xs2y − s1ys2x − s1xt2 + s1yt1 + s2xt2 − s2yt1 − r9s1xs2y + r9s1ys2x

a9 = −s1xs2yt3 + s1ys2xt3
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The unknown variables are lx, ly, lz in the above nonlinear polynomial. Since this equation is a quadratic
polynomial with three variables, we use Gröbner basis to solve this equation. This polynomial has three
variables, so we need to have three equations to provide enough constraints for Gröbner Solver. Polyjam is
used as a Gröbner Solver in implementations [10]. Two cases are considered to find the minimal solutions
for equation (4):

• Case one: One caster is placed on the shadow
receiver plane, and four positions for point lights
are assumed.

• Case two: Two casters are placed on the
shadow receiver plane, and three positions for
point lights are assumed.

Figure 3: Case one Figure 4: Case two

In both of these cases, we have more than one solution. Therefore, we use an additional pose of the shadow
receiver plane and check this pose in constrain (1) to determine the unique solution. After estimating
lspk
, s = 1, . . . , Nl, k = 0, . . . , Ncam, we need to find the good initial estimation for pkRp0

, pktp0
. As rotation

matrix and translation vector have six degrees of freedom, we have to exploit at least three lights to estimate
pkRp0

, pktp0
, k = 1, . . . , Ncam uniquely. The lemma below explains the algorithm for computing the initial

homogeneous transformation pkTp0
. The proof of this can be found in [14].

Lemma. Suppose two sets P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} are corresponding point sets in R
d,

then our goal is to estimate rotation matrix R and translation vector t that transforms point set P to point
set Q which holds below:

(R, t) = argmin
R∈SO(3),t∈Rd

n∑

i=1

||(Rpi + t)− qi||
2

Then optimal rotation and translation are as follow:

R = V









1
1

. . .

1
det(V U⊤)









U⊤,

t = q̄ −Rp̄,

where centroid of point sets are p̄ =
∑n

i=1
pi

n
, q̄ =

∑n
i=1

qi
n

, and centered vectors are estimated as follows:
xi = pi − p̄, yi = qi − q̄; i = 1, . . . , n. The singular value decomposition of the d × d covariance matrix
S = XY ⊤, such that X and Y are the d × n matrices that have xi and yi as their columns respectively,
should be computed as S = UΣV ⊤. U, V are orthogonal matrices and Σ is a diagonal matrix with non-
negative real numbers on the diagonal.

Implementation. We evaluate the proposed method with synthetic data and real-world experiments.
We assume two cameras in both of the simulation and real-world experiments. We simulate our proposed
method with synthetic data. We uniformly distribute board poses, casters, and lights position. As Figure
5b illustrates, at least three lights are sampled uniformly in a cube with a length of 80 cm. Pins are placed
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(a) (b) (c)

Figure 5: (a) Plane Π undergoes different poses randomly. (b) At least three lights are distributed uniformly
in a red cube with a length 80 cm, 10 cm away from the world coordinate center, and the second camera is
selected uniformly in the green cube with the length 60 cm, 80 cm away from world coordinate center. (c)
angle around y-axis is selected randomly within the range [−270◦,−90◦].

uniformly on the plane 10 cm away from edge of the plane. Pins with the height uniformly within the
[5, 20] cm are selected. The board size is 40× 60 cm, and its poses are randomly sampled within the range
shown in Figure 5a. The second camera is placed uniformly in the green cube shown in Figure 5b, and the
camera is rotated randomly around x-axis and z-axis within the range [−10◦, 10◦], and y-axis within the
range [−270◦,−90◦]. As Figure 5c shows, we want to avoid overlapping views in cameras. For both cases
mentioned previously, we compute shadows with the synthetic data, and we compute the errors as follow:

(a) Noise effects on shadow localization for case one. Five
casters and five lights are used in this simulation with
Gaussian noise of variance σ

2 and mean zero. Every data
is the median of 500 simulated iterations.

(b) Noise effects on shadow localization for case two. Five
casters and five lights are used in this simulation with
Gaussian noise of variance σ

2 and mean zero. Every data
is the median of 500 simulated iterations.

Figure 6

El =
∑Nl

s=1
||lsp0

−{lsp0}GT ||2

Nl
,

Et = ||{p1Rp0
}⊤GT

p1tp0
− {p1Rp0

}⊤GT {
p1tp0

}GT ||2,

Erpy = f({p1Rp0
}⊤GT

p1Rp0
)

where El, Et, Erpy are mean lights error, translation,
and rotation error respectively. Note that transla-
tion and rotation error are relative pose error be-
tween computed pose p1Tp0

and ground truth pose
{p1Tp0

}GT . The relation f : R ∈ SO(3) −→ f(R) =
(ψ, θ, φ) transforms rotation matrix R to angles
around axis (φ, θ, ψ), where R = Rz(φ)Ry(θ)Rx(ψ).
We perturbed the shadow positions with Gaussian
noise with mean zero and variance σ2 to analyze the
influence of shadow localization. The unit specified
in the simulation results is centimeter. As Figure 6
shows, three errors increase when the noise variance
increases, and it is shown that the method is more
robust in case one in comparison to case two. Hence,
we evaluate our method on real-world experiments
in case one
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Table 1: Result of real-world experiments in three laboratory environments

Environment Case Nl Ncast Np Erpy Et

Env1 one 3 4 5 0.0532576 4.18041
Env2 one 5 4 5 0.0928035 8.61596
Env2 one 3 6 5 0.163707 24.207

(a) A photo taken from ArUco markers, pose of the board
with respect to camera coordinate is computed.

(b) Homography transformation of Figure 7a

(c) Laboratory environment

Figure 7

We evaluate the proposed method in three labora-
tory environments Env1, Env2, and Env3. We ex-
ploit two Point Grey cameras and three lights in the
laboratory environment (Figure 7c).
ArUco markers [7] are printed on a A2 paper, and
we use OpenCV 3D pose estimation[4] to obtain the
shadow receiver plane pose with respect to camera

coordinate system Πi
pkTpk

. Pins with length ∼ 10
cm and head diameters of ∼ 3 mm, which are small
enough to localize them accurately and big enough
to detect, are used as shadow casters.
For shadow detection, we compute homography
transformation by using four corners of ArUco mark-
ers, Figure 7a is transformed by homography trans-
formation, and the result is Figure 7b.
After computing homography transformation, we
manually label shadow positions and estimate sijks
in this transformed image, and we report the evalu-
ation result in Table 1. Two errors Erpy, and Et are
reported in this table.
According to this table, translation errors are big
enough to use this method for calibration, so the
future objective is to recognize the mistake that
caused this significant error.
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2 3D Reconstruction of Non-rigid Surfaces

Motivation. Structure from Motion (SfM) is the process of estimating 3D structure from a set of 2D images
and the pose of a camera in the world coordinate system. Recovering 3D structures of a scene observed by
moving cameras is a classical problem in Computer Vision. Rigid Structures have made significant progress
toward achieving this goal, especially in multiple-view approaches, the problem will be complicated when
givens are monocular realistic 2D correspondences. The difference between rigid and non-rigid structures
is that the deformable objects generally vary their shapes over time, so the number of unknown parame-
ters increases dramatically in comparison to rigid SfM problems. Non-rigid 3D shape recovery has broad
applications in different domains, such as the entertainment, media industry, and the medical field. It is a
challenging and ambiguous problem when the sensor data is noisy, which is typically the case when dealing
with real images; in this case, the camera model is a perspective view, and images are uncalibrated.

Problem. Consider the non-rigid structure has n points, and there are its homogeneous coordinates in F

frames. The jth point is projected in the ith frame as below:

dijUij = Ki[Ri|Ti]Xij ,

where Uij = (uij , vij , 1)
⊤ and Xij = (xij , yij , zij , 1)

⊤ are respectively the homogeneous image coordinate and
3D world coordinate of the jth point in the ith frame. Ki is the 3× 3 calibration matrix that is just related
to the focal length of fi in every frame. This assumption is practical in real-world sequences. Ri and Ti are
respectively rotation matrix and translation vector in the ith frame, and dijis known as a projective depth.
Now if we consider n points and F frames in one equation, the problem will be formulated as follows:

W =






d11U11 . . . d1nU1n

...
...

...
dF1UF1 . . . dFnUFn




 =






K1[R1|T1]S1

...
KF [RF |TF ]SF




 ,

where the 4× n matrix Si represents the 3D shape observed in the frame i. W is 4F × n input measurement
matrix that is known in this problem and all other parameters are unknown.
Under the orthographic model, unknown parameters are just Ri and Si in F frames and formulation of the
problem is more straightforward in comparison to the equations above, and we have:

W =






W1

...
WF




 =






R1 ⃝
. . .

⃝ RF











S1

...
SF




+






t1
...
tF




 [1, . . . , 1]

= RS + T1⊤

Note that we can eliminate the translation component from the equation above by registering the image
coordinates to the centroid in each frame i. As a result, the equation becomes

W = RS

Therefore, the main goal is to estimate R and S under the orthographic model.
Literature review. Tomasi and Kanade proposed a factorization method for recovering 3D shapes of
rigid objects from 2D correspondences with the assumption of the orthographic camera model [15]. Bregler
[5] pioneered the first solution to non-rigid structure from motion by extending Tomasi and Kanade rigid
factorization approach, he assumed that 3D deformable shape in every frame is a linear combination of a
set of shape basis. Therefore, we need to estimate shape basis and its coefficients instead of shapes in every
frame. Akhter [3] attacked the problem in another direction and showed that 3D shape in any frame in the
sequence could be expressed as a linear combination of trajectory basis, which are predefined and Discrete
Cosine Transform (DCT) basis can be used to describe most real motions compactly. Bregler, the same as
Tomasi and Kanade, has enforced the orthonormality constraint of rotation matrices to solve ambiguities
because matrix factorization is not unique. Xiao [17] asserted that using only the rotation constraints results
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in ambiguous and invalid solutions. The ambiguity arises from the fact that the shape bases are not unique.
An arbitrary linear transformation of the bases produces another set of eligible bases. To eliminate the
ambiguity, a set of new constraints, basis constraints, which uniquely determine the shape bases, has been
proposed. Akhter [2] proved that orthonormality constraints are sufficient to recover the 3D structure from
image observations alone. Some papers have discussed non-rigid SfM under weak perspective camera model,
While this camera model can be sufficient when the variation in depth over the whole object is relatively
small, it is known that the full perspective model is often more accurate to what is observed in real images.
Therefore, several authors have proposed non-rigid SfM formulations for the full perspective case [18, 8].
One of the weaknesses of non-rigid structure-from-motion techniques is their sensitivity to missing data
and mismatches. Garg [6] offered the first variational approach to the problem of dense 3D reconstruction
of non-rigid surfaces from monocular video sequences. The problem is formulated with calibrated images
under the orthographic camera model. However, this method reconstructs highly deforming smooth surfaces
densely and accurately directly from video without the need for any prior models. Kumar [11] proposed
a new approach for dense non-rigid SfM under the orthographic model by modeling the problem on a
Grassmann manifold. Specifically, they assumed the complex non-rigid deformations lie on a union of local
linear subspaces both spatially and temporally. This naturally allows for a compact representation of the
complex non-rigid deformation over frames that previous methods are unable to show.
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